The Impact of Missing Values on PLS Model Fitting
نویسندگان
چکیده
The analysis of interactive marketing campaigns frequently requires the investigation of latent constructs. Consequently, structural equation modeling is well established in this domain. Noticeably, the Partial-Least-Squares (PLS) algorithm is gaining popularity in the analysis of interactive marketing applications which may be attributed to its accuracy and robustness when data are not normally distributed. Moreover, the PLS algorithm also appraises incomplete data. This study reports from a simulation experiment in which a set of complete observations is blended with different patterns of missing values. We consider the impacts on the overall model fit, the outer model fit, and the assessment of significance by bootstrapping. Our results cast serious doubts on PLS algorithms’ ability to cope with missing values in a data set.
منابع مشابه
پیشبینی سری زمانی تعداد معلولیتهای مربوط به حوادث ناشی از کار برای بیمه شدگان تأمین اجتماعی بین سالهای 1379 تا 1389 در ایران با استفاده از روش تحلیل باکس جنکینز
Background : Controlling occurrence of accidents in work place has been an interesting subject in all countries worldwide. Financial consequences of these accidents and their economic losses imposed on the involved companies is only one of the insignificant aspects of such damages and when the non-economic but intangible losses to the society are taken into consideration ,these economic damag...
متن کاملFitting the Integrated Model of Location of the Pre-urban Areas with Emphasis on Environmental Balance
Today, sustainable placement is one of the main approaches of urban planners and regional planners. The purpose of this study was to design and fit a consolidated model of localization of densely populated areas with emphasis on environmental balance. The purpose of this research is practical and it is a survey-analysis type. At first, according to the theoretical foundations, the research back...
متن کاملInfluence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons
Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...
متن کاملمدل رگرسیون لجستیک چند حالته با مقادیر گم شده و کاربرد آن در بررسی بیماری گواتر
In large–scale sampling opeartions (e.g. nation-wide health surveys) we always face the problem of non-response item(s) and/or non-response unit(s). In fitting a model to the data we have two groups of variables, namely dependent and independent variables. Non-response may occur for any of these groups of variables. In this paper we assume Y as a categorical dependent variable with three levels...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کامل